Graphing Logarithmic Functions

These notes include material from section 5.4 (p. 375 - 380) and section 5.6 (p. 401 - 404) in your workbook. You should also read these sections for more complete explanations and additional examples.

Graphing Logarithmic Functions

In general, the graphs of logarithmic functions have one of two appearances:

1. The graph of $f(x) = \log_a x$ when a > 1.

2. The graph of $f(x) = \log_a x$ when 0 < a < 1.

Note the following properties of the graph of $f(x) = \log_a x$:

- 1. When a > 1, y increases as x increases. The function is said to be **increasing**.
- 2. When 0 < a < 1, y decreases as x increases. The function is said to be **decreasing**.
- 3. The *x*-intercept of the graph is always 1.
- 4. The point (a, 1) is always on the graph.
- 5. The *y*-axis (x = 0) is a vertical asymptote.
- 6. The graph has no y-intercept.
- 7. The domain of the function is x > 0.
- 8. The range of the function is $y \in \mathbb{R}$.

To draw the graph of a logarithmic function of the form $f(x) = \log_a x$,

- 1. Rewrite the logarithmic function as an exponential function.
- 2. Sketch the graph of the exponential function.
- 3. Draw the inverse of the exponential function (which is the logarithmic function) by interchanging the *x* and *y* coordinates of each key point.

Example (5.4 Ex 4, sidebar p. 379)

a) Graph $y = \log_4 x$.

b) Identify the intercepts, the equations of any asymptotes, and the domain and range of the function.

Example (not in workbook) Graph $y = \ln x$.

Transforming Logarithmic Functions

The image graph $y = c \log_a b(x - h) + k$ is the graph of $y = a^x$:

- stretched vertically by a factor of |c|
- stretched horizontally by a factor of $\frac{1}{|b|}$
- reflected in the *x*-axis when c < 0
- reflected in the *y*-axis when b < 0
- translated *k* units vertically
- translated *h* units horizontally

Note: Remember that transformations must be applied in the correct order (stretches, then reflections, then translations).

Example (5.6 Ex 3, sidebar p. 403)

a) Create a table of values for $y = \log_2 x$.

b) How is the graph of $y = \log_2 x - 1$ related to the graph of $y = \log_2 x$? Sketch these two graphs on the same grid.

c) Identify the intercepts and the equation of the asymptote of the graph of $y = \log_2 x - 1$, and the domain and range of the function.

Example (not in workbook)

Graph $y = 4 \log_3(x+1) - 5$.

Example (not in workbook) Graph $y = 2\ln\left(\frac{1}{2}x+2\right) - 3$

Homework: #10, 11 in the section 5.4 exercises (p. 381 - 385). Answers on p. 386. #8 - 11 in the section 5.6 exercises (p. 405 - 410). Answers on p. 411.